Generalized Spring Tensor Algorithms: with Workflow Scheduling Applications in Cloud Computing
نویسندگان
چکیده
In Cloud Computing, designing an efficient workflow scheduling algorithm is considered as a main goal. Load balancing is one of the most sophisticated methodologies, which can optimize workflow scheduling by distributing the load evenly among available resources. A well-designed load balancing algorithm has significant impact on performance and output in Cloud Computing. Therefore, designing robust load balancing techniques to manage the networks' load has always been a priority. Researchers have proposed and examined different load balancing methods; there is, however, a large knowledge gap in adopting an efficient load balancing algorithm in the Cloud system. This paper describes how a generalized spring tensor, an evolutionary algorithm with mathematical apparatus, can be utilized for a more efficient and effective load management in Cloud Computing. Considering the fluctuation and magnitude of the load, a novel application of workflow scheduling is investigated in the context of various mathematical patterns. The preliminary results of the research show that defining the dependency ratio between workflow tasks in Cloud Computing, results in better resource management, maximized performance and minimized response time while dealing with customer's requests.
منابع مشابه
Improving the palbimm scheduling algorithm for fault tolerance in cloud computing
Cloud computing is the latest technology that involves distributed computation over the Internet. It meets the needs of users through sharing resources and using virtual technology. The workflow user applications refer to a set of tasks to be processed within the cloud environment. Scheduling algorithms have a lot to do with the efficiency of cloud computing environments through selection of su...
متن کاملData Replication-Based Scheduling in Cloud Computing Environment
Abstract— High-performance computing and vast storage are two key factors required for executing data-intensive applications. In comparison with traditional distributed systems like data grid, cloud computing provides these factors in a more affordable, scalable and elastic platform. Furthermore, accessing data files is critical for performing such applications. Sometimes accessing data becomes...
متن کاملA Clustering Approach to Scientific Workflow Scheduling on the Cloud with Deadline and Cost Constraints
One of the main features of High Throughput Computing systems is the availability of high power processing resources. Cloud Computing systems can offer these features through concepts like Pay-Per-Use and Quality of Service (QoS) over the Internet. Many applications in Cloud computing are represented by workflows. Quality of Service is one of the most important challenges in the context of sche...
متن کاملTask Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing
The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...
متن کاملTASA: A New Task Scheduling Algorithm in Cloud Computing
Cloud computing refers to services that run in a distributed network and are accessible through common internet protocols. It merges a lot of physical resources and offers them to users as services according to service level agreement. Therefore, resource management alongside with task scheduling has direct influence on cloud networks’ performance and efficiency. Presenting a proper scheduling ...
متن کامل